Nghiên cứu ứng dụng thuật toán học máy để dự báo khai thác cho đối tượng móng nứt nẻ, mỏ Bạch Hổ
Trần Đăng Tú1, Đinh Đức Huy (1), Phạm Trường Giang (1) , Lê Quang Duyến (2), Trần Xuân Quý (1), Lê Thế Hùng (1), Lưu Đình Tùng (1) 1. Viện Dầu khí Việt Nam. 2. Đại học Mỏ Địa chất. Email: tutd@vpi.pvn.vn. https://doi.org/10.47800/PVJ.2020.12-05

Tóm tắt

Các công cụ đang được sử dụng để dự báo sản lượng khai thác truyền thống cho đối tượng móng nứt nẻ (như mô hình mô phỏng thủy động lực và phương pháp hệ đường cong suy giảm...) có độ tin cậy và hiệu quả dự báo chưa cao, mang tính ngắn hạn, ảnh hưởng đến kế hoạch phát triển, điều hành mỏ cũng như tối ưu hiệu quả thu hồi dầu.
Bài báo giới thiệu khả năng ứng dụng thuật toán học máy để dự báo khai thác cho đối tượng móng mỏ Bạch Hổ. Kết quả nghiên cứu cho thấy mô hình mạng neural nhân tạo (artificial neural network - ANN) sử dụng thuật toán lan truyền ngược và mô hình tăng trưởng logistic (logistics growth model - LGM) sử dụng thuật toán tối ưu đã nâng cao khả năng dự báo khai thác với mức độ chính xác cao.

Từ khóa: Trí tuệ nhân tạo, học máy, dự báo khai thác, mỏ Bạch Hổ, mô hình tăng trưởng.

Research on application of machine learning algorithm to forecast production for fracture basement - Bach Ho field

Tran Dang Tu (1), Dinh Duc Huy 1), Pham Truong Giang (1), Le Quang Duyen (2),
Tran Xuan Quy (1), Le The Hung (1), Luu Dinh Tung (1)

1.Vietnam Petroleum Institute.

2. Hanoi University of Mining and Geology

Email: tutd@vpi.pvn.vn

Summary

Conventional tools that are currently used to forecast production for fracture basement (such as simulation model and decline curve analysis) are still not highly reliable and their forecasting performance is still short-term, affecting the plan for field development, field operation and optimisation of oil recovery.

The paper introduces the applicability of machine learning algorithm to predict oil production for basement reservoirs of Bach Ho field. The research results show that the artificial neural network (ANN) model using reverse propagation algorithm and the logistic growth model (LGM) using optimisation algorithm have improved the ability to predict production with high accuracy.

Key words: Artificial neural network, machine learning, forecasting production, Bach Ho field, logistic growth model.

Xem chi tiết




Bình luận
Họ tên
Email
Mã xác nhận
 
 

Tin khác

Cơ quan chủ quản: Tập đoàn Dầu khí Việt Nam.
Trưởng ban biên tập: Đỗ Chí Thanh, Phó Tổng giám đốc Tập đoàn Dầu khí Việt Nam. .
Số giấy phép: 176/GP-TTĐT, cấp ngày: 11/09/2019. Website: www.pvn.vn
Địa chỉ: Số 18 Láng Hạ, Hà Nội. Tel: (84-4) 38252526. Fax (84-4) 38265942
Liên hệ     |    Đánh giá     |    Sitemap     |    Điều khoản sử dụng
Phát triển bởi www.paic.pvn.vn